a2zpapers.com

Roll No_____

B.Tech.(A.E)

FLUID MECHANICS AND MACHINERY **Subject Code: BTAE-403**

Total no of page-2

Time: 3 hrs MAY-2014 Max Marks: 60

NOTE:

- 1. Section A is compulsory consisting of 10 questions each carrying 2 marks.
- 2. Section B contains five questions each carrying 5 marks. Attempt any 4 questions.
- 3. Section C contains 3 questions each carrying 10 marks. Attempt any 2 questions.

Section-A (2x10)

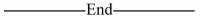
- Q1. Write briefly:
 - a) What is an ideal fluid.
 - b) Differentiate between Newtonian fluid and Non-Newtonian fluid.
 - c) Define the terms buoyancy and centre of buoyancy.
 - d) Differentiate between path line and stream line.
 - e) Write the Bernoulli's equation.
 - f) What do you mean by kinematic and dynamic similarity.
 - g) What is dimensional homogeneity.
 - h) What is a laminar flow.
 - i) What is the significance of Darcy equation.
 - i) What is a pitot tube.

Section-B (5x4)

Q2.A uniform body of size 3m long x2m wide x 1m deep floats in water. What is the weight if the depth of immersion is 0.8m .Also determine the meta centric height.

Q3. The stream function for a two dimensional flow is given by Ψ =2xy, calculate the velocity at the point P(2,3). Find the velocity potential function Φ .

Q4.State the Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's equation from first principle and state the assumptions made. .


- Q5. Define and explain the terms (i) Hydraulic gradient line (ii) Total energy line.
- Q6. With the help of a neat sketch explain the working of a venturimeter. Derive an expression for the discharge through a venturimeter.

www.a2zpapers.com www.a2zpapers.com Section-C (2x10)

Q7. State Buckingham's π -theorem. The efficiency η of a fan depends on density ρ , dynamic viscosity μ of the fluid, angular velocity ω , diameter D of the rotor and the discharge Q.Express η in terms of dimensionless parameters.

Q8.(a) What are the different energy losses in pipes.

- (b) An oil of kinematic viscosity 0.4 is flowing through a pipe of diameter 300mm at the rate of 300litres/s. Find the head loss due to friction for a length of 50m of pipe.
- Q9. Write a short note on any two (i) Hydraulic accumulator (ii) Hydraulic intensifier (iii) gear pump.

